corona_cologne dataset into your R session.
corona_cologne files in the ../data/ folder, you would only need the one with the .shp extension.
corona_cologne <-
sf::read_sf(
"./data/corona_cologne.shp"
)
Use the same command as before, but instead of defining the path to the file location plug in the following string:
"https://geoportal.stadt-koeln.de/arcgis/rest/services/Politik_und_Verwaltung/covid_stadtteile/MapServer/1/query?where=id+is+not+null&text=&objectIds=&time=&geometry=&geometryType=esriGeometryEnvelope&inSR=&spatialRel=esriSpatialRelIntersects&distance=&units=esriSRUnit_Foot&relationParam=&outFields=*&returnGeometry=true&returnTrueCurves=false&maxAllowableOffset=&geometryPrecision=&outSR=4326&havingClause=&returnIdsOnly=false&returnCountOnly=false&orderByFields=&groupByFieldsForStatistics=&outStatistics=&returnZ=false&returnM=false&gdbVersion=&historicMoment=&returnDistinctValues=false&resultOffset=&resultRecordCount=&returnExtentOnly=false&datumTransformation=¶meterValues=&rangeValues=&quantizationParameters=&featureEncoding=esriDefault&f=geojson"
paste()/paste0() function or functions from additional packages such as glue::glue() from the glue package.
library(dplyr)
corona_cologne <-
glue::glue(
"https://geoportal.stadt-koeln.de/arcgis/rest/services/\\
Politik_und_Verwaltung/covid_stadtteile/MapServer/1/query?\\
where=id+is+not+null&text=&objectIds=&time=&geometry=&\\
geometryType=esriGeometryEnvelope&inSR=&spatialRel=\\
esriSpatialRelIntersects&distance=&units=esriSRUnit_Foot&relationParam=\\
&outFields=*&returnGeometry=true&returnTrueCurves=false&\\
maxAllowableOffset=&geometryPrecision=&outSR=4326&havingClause=\\
&returnIdsOnly=false&returnCountOnly=false&orderByFields=\\
&groupByFieldsForStatistics=&outStatistics=&returnZ=false\\
&returnM=false&gdbVersion=&historicMoment=&returnDistinctValues=false\\
&resultOffset=&resultRecordCount=&returnExtentOnly=false\\
&datumTransformation=¶meterValues=&rangeValues=\\
&quantizationParameters=&featureEncoding=esriDefault&f=geojson"
) %>%
sf::st_read()
## Reading layer `OGRGeoJSON' from data source
## `https://geoportal.stadt-koeln.de/arcgis/rest/services/Politik_und_Verwaltung/covid_stadtteile/MapServer/1/query?where=id+is+not+null&text=&objectIds=&time=&geometry=&geometryType=esriGeometryEnvelope&inSR=&spatialRel=esriSpatialRelIntersects&distance=&units=esriSRUnit_Foot&relationParam=&outFields=*&returnGeometry=true&returnTrueCurves=false&maxAllowableOffset=&geometryPrecision=&outSR=4326&havingClause=&returnIdsOnly=false&returnCountOnly=false&orderByFields=&groupByFieldsForStatistics=&outStatistics=&returnZ=false&returnM=false&gdbVersion=&historicMoment=&returnDistinctValues=false&resultOffset=&resultRecordCount=&returnExtentOnly=false&datumTransformation=¶meterValues=&rangeValues=&quantizationParameters=&featureEncoding=esriDefault&f=geojson'
## using driver `GeoJSON'
## Simple feature collection with 86 features and 8 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: 6.77253 ymin: 50.83045 xmax: 7.162028 ymax: 51.08496
## Geodetic CRS: WGS 84
# This exercise shows the beauty of the `sf::st_read` function. It not only
# detects several different geospatial data formats; it also can download data
# directly from the internet (in this case a .geojson data file). Downloading
# data directly is something that comes quite handy in the geospatial data world
# as a lot of data are distributed in the form of download links or even APIs.
EPSG:3035 using the sf::st_transform() function.
corona_cologne <-
corona_cologne %>%
sf::st_transform(3035)
immigrants_cologne and the inhabitants_cologne raster datasets in your R session.
stars::read_stars() function.
immigrants_cologne <-
stars::read_stars("./data/immigrants_cologne.tif")
inhabitants_cologne <-
stars::read_stars("./data/inhabitants_cologne.tif")
sum as function. Does it work?
immigrants_count <-
aggregate(
x = immigrants_cologne,
by = corona_cologne,
FUN = sum,
na.rm = TRUE
)
## Error in st_geos_binop("intersects", x, y, sparse = sparse, prepared = prepared, : st_crs(x) == st_crs(y) ist nicht TRUE
# It does not work as R is complaining about non-matching CRS.
Let’s see what is happening here by comparing the exact CRS strings:
sf::st_crs(corona_cologne)
## Coordinate Reference System:
## User input: EPSG:3035
## wkt:
## PROJCRS["ETRS89-extended / LAEA Europe",
## BASEGEOGCRS["ETRS89",
## DATUM["European Terrestrial Reference System 1989",
## ELLIPSOID["GRS 1980",6378137,298.257222101,
## LENGTHUNIT["metre",1]]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433]],
## ID["EPSG",4258]],
## CONVERSION["Europe Equal Area 2001",
## METHOD["Lambert Azimuthal Equal Area",
## ID["EPSG",9820]],
## PARAMETER["Latitude of natural origin",52,
## ANGLEUNIT["degree",0.0174532925199433],
## ID["EPSG",8801]],
## PARAMETER["Longitude of natural origin",10,
## ANGLEUNIT["degree",0.0174532925199433],
## ID["EPSG",8802]],
## PARAMETER["False easting",4321000,
## LENGTHUNIT["metre",1],
## ID["EPSG",8806]],
## PARAMETER["False northing",3210000,
## LENGTHUNIT["metre",1],
## ID["EPSG",8807]]],
## CS[Cartesian,2],
## AXIS["northing (Y)",north,
## ORDER[1],
## LENGTHUNIT["metre",1]],
## AXIS["easting (X)",east,
## ORDER[2],
## LENGTHUNIT["metre",1]],
## USAGE[
## SCOPE["Statistical analysis."],
## AREA["Europe - European Union (EU) countries and candidates. Europe - onshore and offshore: Albania; Andorra; Austria; Belgium; Bosnia and Herzegovina; Bulgaria; Croatia; Cyprus; Czechia; Denmark; Estonia; Faroe Islands; Finland; France; Germany; Gibraltar; Greece; Hungary; Iceland; Ireland; Italy; Kosovo; Latvia; Liechtenstein; Lithuania; Luxembourg; Malta; Monaco; Montenegro; Netherlands; North Macedonia; Norway including Svalbard and Jan Mayen; Poland; Portugal including Madeira and Azores; Romania; San Marino; Serbia; Slovakia; Slovenia; Spain including Canary Islands; Sweden; Switzerland; Turkey; United Kingdom (UK) including Channel Islands and Isle of Man; Vatican City State."],
## BBOX[24.6,-35.58,84.17,44.83]],
## ID["EPSG",3035]]
sf::st_crs(immigrants_cologne)
## Coordinate Reference System:
## User input: ETRS89-extended / LAEA Europe (with axis order normalized for visualization)
## wkt:
## PROJCRS["ETRS89-extended / LAEA Europe (with axis order normalized for visualization)",
## BASEGEOGCRS["ETRS89",
## DATUM["European Terrestrial Reference System 1989",
## ELLIPSOID["GRS 1980",6378137,298.257222101004,
## LENGTHUNIT["metre",1]]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433]],
## ID["EPSG",4258]],
## CONVERSION["Lambert Azimuthal Equal Area",
## METHOD["Lambert Azimuthal Equal Area",
## ID["EPSG",9820]],
## PARAMETER["Latitude of natural origin",52,
## ANGLEUNIT["degree",0.0174532925199433],
## ID["EPSG",8801]],
## PARAMETER["Longitude of natural origin",10,
## ANGLEUNIT["degree",0.0174532925199433],
## ID["EPSG",8802]],
## PARAMETER["False easting",4321000,
## LENGTHUNIT["metre",1],
## ID["EPSG",8806]],
## PARAMETER["False northing",3210000,
## LENGTHUNIT["metre",1],
## ID["EPSG",8807]]],
## CS[Cartesian,2],
## AXIS["(E)",east,
## ORDER[1],
## LENGTHUNIT["metre",1]],
## AXIS["(N)",north,
## ORDER[2],
## LENGTHUNIT["metre",1]]]
Indeed, they are a bit different. We should change that.
EPSG:3035.
stars and sf objects talk fluently to each other. You could either use sf::st_transform or stars::st_transform_proj() for this task. Try it out!
immigrants_cologne <-
immigrants_cologne %>%
stars::st_transform_proj(3035)
inhabitants_cologne <-
inhabitants_cologne %>%
stars::st_transform_proj(3035)
sum as function. Does it work now?
immigrants_count <-
aggregate(
x = immigrants_cologne,
by = corona_cologne,
FUN = sum,
na.rm = TRUE
)
inhabitants_count <-
aggregate(
x = inhabitants_cologne,
by = corona_cologne,
FUN = sum,
na.rm = TRUE
)
corona_cologne dataset. Plot it if you will.
You can either do it on-the-fly using dplyr::mutate() as on the slides (no. 33), or create first a new object and then add it using base-R (corona_cologne$immigrant_share <- ...). You could even combine the approaches.
immigrants_count[[1]])
corona_cologne <-
corona_cologne %>%
dplyr::mutate(
immigrant_share = immigrants_count[[1]] * 100 / inhabitants_count[[1]]
)
plot(corona_cologne["immigrant_share"])