GESIS Workshop
Day | Time | Title |
---|---|---|
April 23 | 10:00-11:30 | Introduction to GIS |
April 23 | 11:45-13:00 | Vector Data |
April 23 | 13:00-14:00 | Lunch Break |
April 23 | 14:00-15:30 | Mapping |
April 23 | 15:45-17:00 | Raster Data |
April 24 | 09:00-10:30 | Advanced Data Import & Processing |
April 24 | 10:45-12:00 | Applied Data Wrangling & Linking |
April 24 | 12:00-13:00 | Lunch Break |
April 24 | 13:00-14:30 | Investigating Spatial Autocorrelation |
April 24 | 14:45-16:00 | Spatial Econometrics & Outlook |
plot()
does not allow us to manipulate the maps in an easy. But we already have the two most essential ingredients to create a nice map:
./data
folderattributed_cologne <- sf::read_sf("./data/attributed_cologne.shp") charger_cologne <- sf::read_sf("./data/charger_cologne.shp")streets_cologne <- sf::read_sf("./data/streets_cologne.shp")
Good Mapping
Good Mapping
Bad Mapping
... but there is one other type:
The fast but nice map.
R
Packages for Mapping
As always, R
offers several ways to map spatial data, and the provided packages are various.
What is out there? Just a few:
mapdata
leaflet
tmap
mapview
library(tmap)tm_shape(attributed_cologne) + tm_fill("ecar")
library(tmap)tm_shape(attributed_cologne) + tm_fill("ecar")
tmap
In a NutshellThere is not much to consider when using tmap
but two essential requirements:
tmap
In a NutshellThere is not much to consider when using tmap
but two essential requirements:
# define and introduce every (new) # geospatial data objecttm_shape() + # choose at least one building block as # 'aesthetic layer' # for polygon layer choose from: tm_fill() + # polygons without borders tm_polygons() + # polygons with borders tm_borders() + # only borders of polygons # for line layer choose: tm_lines() + # for point layer choose: tm_dots() + tm_bubbles() + # for raster layer choose tm_raster() + tm_rgb() + ...# for all of them:?'tmap-element'
tmap
In a Nutshell: Polygon Layertm_shape(attributed_cologne) + tm_fill()tm_shape(attributed_cologne) + tm_polygons()tm_shape(attributed_cologne) + tm_borders()
tmap
In a Nutshell: Polygon Layertm_shape(attributed_cologne) + tm_fill()tm_shape(attributed_cologne) + tm_polygons()tm_shape(attributed_cologne) + tm_borders()
tmap
In a Nutshell: Line and Point Layertm_shape(streets_cologne) + tm_lines()tm_shape(charger_cologne) + tm_dots()
tmap
In a Nutshell: Line and Point Layertm_shape(streets_cologne) + tm_lines()tm_shape(charger_cologne) + tm_dots()
tmap
In a Nutshell: Put It All TogetherWe can map the geometric attributes as single layers, but we can also layer our map and stack the layers on each other.
tmap
In a Nutshell: Put It All TogetherWe can map the geometric attributes as single layers, but we can also layer our map and stack the layers on each other.
tm_shape(attributed_cologne) + tm_polygons() + tm_shape(streets_cologne) + tm_lines() + tm_shape(charger_cologne) + tm_dots(col = "red")
tmap
In a Nutshell: Put It All TogetherWe can map the geometric attributes as single layers, but we can also layer our map and stack the layers on each other.
tm_shape(attributed_cologne) + tm_polygons() + tm_shape(streets_cologne) + tm_lines() + tm_shape(charger_cologne) + tm_dots(col = "red")
After we took care of our geometric types, we want to add some information to our data.
The inner construction of each building block of tm_elements
is the same.
tm_shape(attributed_cologne) + tm_polygons("ecar")
tm_shape(attributed_cologne) + tm_polygons("ecar")
tm_shape(attributed_cologne) + tm_polygons( "ecar", palette = "RdPu", title = "Electric Cars", style = "kmeans" )
tm_shape(attributed_cologne) + tm_polygons( "ecar", palette = "RdPu", title = "Electric Cars", style = "kmeans" )
tm_shape(attributed_cologne) + tm_polygons( "ecar", palette = "RdPu", title = "Electric Car", style = "kmeans" ) + tm_layout( legend.outside = TRUE )
tm_shape(attributed_cologne) + tm_polygons("ecar") + tm_scale_bar() + tm_compass()
tm_shape(attributed_cologne) + tm_polygons("ecar") + tm_scale_bar() + tm_compass()
tm_shape(attributed_cologne) + tm_polygons("ecar") + tm_scale_bar(position = "left") + tm_compass(type = "4star")
tm_shape(attributed_cologne) + tm_polygons(c("cdu", "spd", "greens", "afd", "left", "fdp")) + tm_facets( ncol = 3)
attributed_cologne %>% dplyr::mutate(city_area = as.integer(substr(id, 1, 1))) %>% tm_shape(.) + tm_polygons(c("ecar")) + tm_facets(by = "city_area", nrow = 2) + tm_layout(panel.labels = c("1 Innenstadt","2 Rodenkirchen","3 Lindenthal", "4 Ehrenfeld", "5 Nippes","6 Chorweiler", "7 Porz", "8 Kalk", "9 Mülheim"))
tm_shape(attributed_cologne) + tm_polygons("ecar") + tm_style("classic")
# other available styles are: "beaver", "bw", "watercolor" ,# "white", "gray", "natural", "cobalt", "col_blind", "albatross",
tm_animate
allows you to create animated maps and visualize changes in spatial data, e.g. over time or attributes.
You can customize the animation's duration, frame rate, timeline sliders, and transition effects.
vote_gif <- attributed_cologne %>% tidyr::pivot_longer(., cols = c("cdu", "spd", "greens", "afd", "left", "fdp"), # Select all columns to pivot names_to = "party_id", # New column name for party identifier values_to = "voteshare") # New column name for vote shares %>% tm_shape(.) + tm_polygons(c("voteshare")) + tm_facets(along = "party_id") tmap_animation(vote_gif, filename = "./content/img/vote_gif.gif", delay=150)
tmap
offers support for various output formats, including:
You can also control width and height, dpi, etc.
# save regular maptmap_save(ecar_map, filename = "ecar_map.png")# save as interactive maptmap_save(ecar_map, filename = "ecar_map.html" )
In the best cases, maps are easy to understand and an excellent way to transport (scientific) messages.
In the worst cases, they simplify (spurious) correlations and draw a dramatic picture of the world.
Maps can shape narratives
true size
projector?), Example: Kenneth Field's blog post
If you want to dive deeper into mapping with tmap
check out:
And if you want to get some inspiration, keep an eye out for the #30DayMapChallenge
on Twitter.
Repository of Last Year's Challenge here.
Instead of placing maps next to each other, we can also explore spatial correlations by adding layers. Another benefit of layering: We can make our map more realistic and aesthetic.
For example, we can add a background layer of neighboring countries, a layer of German cities, or the German states' borders for orientation. Each layer can visualize another attribute of our map.
For today, we want to add a layer of charging stations to the electric car map.
# map e-car shareecar_map <- tm_shape(german_districts_enhanced) + tm_polygons(col = "ecar_share", title = "Electric Car Share", palette = "viridis", n=10, style = "jenks" ) + tm_layout(main.title = "Electric Cars in Germany", main.title.color = "black" ) + tm_legend(legend.outside = TRUE, legend.outside.position = "left")ecar_map
# map the charging stations on the e-car mapecar_chargers_map <- tm_shape(german_districts_enhanced) + tm_polygons(col = "ecar_share", title = "Electric Car Share", palette = "viridis", n = 10, style = "jenks" ) + tm_layout(main.title = "Electric Cars in Germany", main.title.color = "black" ) + tm_legend(legend.outside = TRUE, legend.outside.position = "left") + # Add charging point data tm_shape(chargers_sf) + tm_dots("power_kw", col = "lightgrey", alpha = 0.1, title.size = "Power of Charging Station (kW)") ecar_chargers_map
Stroppe, A.-K., & Jungmann, N. (2022). Stadt, Land, Wahl: Welchen Einfluss hat der Wohnort auf die Wahlentscheidung bei der Bundestagswahl 2021? easy_social_sciences, 67, 49-60. https://doi.org/10.15464/easy.2022.07
# With Credits to Nils Jungmann## District Shapefilegerman_districts <- # load data sf::read_sf("./data/VG250_KRS.shp") %>% # transform to correct crs sf::st_transform(crs = 3035) %>% # subsetting land area of Germany dplyr::filter(GF == 4) %>% # only keep necessary cols dplyr::select(AGS,geometry) ## BL Shapefilegerman_states <- sf::read_sf("./data/VG250_LAN.shp") %>% # transform to correct crs sf::st_transform(crs = 3035) %>% # subsetting land area of Germany dplyr::filter(GF == 4) %>% # only keep necessary cols dplyr::select(AGS,geometry) ## German Federal Election Results 21 ### Abfrage bundeswahlleiter, 28.02.22### Wahlergebnisse nach kreisfreien Städten und Landkeisen### https://www.bundeswahlleiter.de/bundestagswahlen/2021/ergebnisse/weitere-ergebnisse.htmlbtw21_krs <- # load data read.csv2("./data/btw2021kreis_zweitstimme.csv", header= T, fill = T, sep= ";", dec = ",", colClasses=c("character","character",rep("numeric",44)), encoding = "UTF-8", strip.white = TRUE) %>% # correct name first col dplyr::rename(., AGS = 1) %>% # compute vote shares dplyr::mutate( AGS = stringr::str_pad(.$AGS, 5, pad = "0"), turnout = ((Ungültige + Gültige)/Wahlberechtigte) *100, union_shr = ((CDU + CSU) / Gültige) * 100, afd_shr = (AfD / Gültige) * 100, fdp_shr = (FDP / Gültige) * 100, spd_shr = (SPD / Gültige) * 100, linke_shr = (DIE.LINKE / Gültige) * 100, green_shr = (GRÜNE / Gültige) * 100, sonstige_shr = (rowSums(.[14:46])/Gültige) * 100) %>% # select necessary vars dplyr::select(AGS,turnout, ends_with(c("_shr"))) %>% # remove mean over all districts dplyr::filter(. , AGS != "00000") %>% # aggregate east and west berlin dplyr::mutate(. , AGS = ifelse(AGS == "11100" | AGS == "11200", "11000", AGS)) %>% dplyr::group_by(AGS) %>% dplyr::summarise(across(everything(), list(mean))) %>% dplyr::rename_with(~stringr::str_remove(., '_1'))## correct for district that was reformed in 2022btw21_krs <- btw21_krs %>% dplyr::filter(., AGS == "16063") %>% dplyr::mutate( AGS = "16056") %>% dplyr::bind_rows(btw21_krs,.)## join election results to shapefilegerman_districts_btw <- german_districts %>% dplyr::left_join(. , btw21_krs, by = "AGS") # Prepare for mapping: Dataset for each party plus colorunion <- german_districts_btw %>% dplyr::select(union_shr, geometry) %>% dplyr::mutate(party = "Union", color = "#030303") %>% dplyr::rename(party_shr = union_shr)spd <- german_districts_btw %>% dplyr::select(spd_shr, geometry) %>% dplyr::mutate(party = "SPD", color = "#FF0000") %>% dplyr::rename(party_shr = spd_shr)fdp <- german_districts_btw %>% dplyr::select(fdp_shr, geometry) %>% dplyr::mutate(party = "FDP", color = "#FFFF00") %>% dplyr::rename(party_shr = fdp_shr)gruene <- german_districts_btw %>% dplyr::select(green_shr, geometry) %>% dplyr::mutate(party = "Gruene", color = "#66CD00") %>% dplyr::rename(party_shr = green_shr)linke <- german_districts_btw %>% dplyr::select(linke_shr, geometry) %>% dplyr::mutate(party = "Linke", color = "#8A2BE2") %>% dplyr::rename(party_shr =linke_shr)afd <- german_districts_btw %>% dplyr::select(afd_shr, geometry) %>% dplyr::mutate(party = "AfD", color = "#1E90FF") %>% dplyr::rename(party_shr = afd_shr)# bind the datasetsparty_shares <- rbind(union, spd, fdp, gruene, linke, afd)# plot## nested datasetby_party <- party_shares %>% dplyr::group_by(party, color) %>% tidyr::nest()## add list of party colors for figuresparty_colors <- c("#030303", "#FF0000", "#FFFF00", "#66CD00", "#8A2BE2", "#1E90FF")# custom party color palettesparties <- c("Union", "SPD", "FDP", "GRÜNE", "LINKE", "AfD")party_palette_fcts <- purrr::map(party_colors, ~ colorRampPalette(c("#FFFFFF",.x)))names(party_palette_fcts) <- paste0(parties,"_palette")union_palette <- party_palette_fcts[[1]](10)spd_palette <- party_palette_fcts[[2]](10)fdp_palette <- party_palette_fcts[[3]](10)gruene_palette <- party_palette_fcts[[4]](10)linke_palette <- party_palette_fcts[[5]](10)afd_palette <- party_palette_fcts[[6]](10)# labels for vote sharesvs_labels <- c("0 bis 5", "5 bis 10", "10 bis 15", "15 bis 20", "20 bis 25", "25 bis 30", "30 bis 35", "35 bis 40", "40 bis 45", "45 bis 50")# maps# mapsuni_btwshare_map <- tm_shape(subset(party_shares, party == "Union")) + tm_polygons("party_shr", title = "CDU/CSU", palette = union_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)spd_btwshare_map <- tm_shape(subset(party_shares, party == "SPD")) + tm_polygons("party_shr", title = "SPD", palette = spd_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)fdp_btwshare_map <- tm_shape(subset(party_shares, party == "FDP")) + tm_polygons("party_shr", title = "FDP", palette = fdp_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)gru_btwshare_map <- tm_shape(subset(party_shares, party == "Gruene")) + tm_polygons("party_shr", title = "Grüne", palette = gruene_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)lin_btwshare_map <- tm_shape(subset(party_shares, party == "Linke")) + tm_polygons("party_shr", title = "DIE LINKE", palette = linke_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)afd_btwshare_map <- tm_shape(subset(party_shares, party == "AfD")) + tm_polygons("party_shr", title = "AfD", palette = afd_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)# combine mapsall_btwshare_map <- tmap_arrange(uni_btwshare_map, spd_btwshare_map, fdp_btwshare_map, gru_btwshare_map, lin_btwshare_map, afd_btwshare_map, ncol = 3) all_btwshare_map# tmap_save(all_btwshare_map, filename = "party_vote_shares_district_map.eps", dpi = 600)
Day | Time | Title |
---|---|---|
April 23 | 10:00-11:30 | Introduction to GIS |
April 23 | 11:45-13:00 | Vector Data |
April 23 | 13:00-14:00 | Lunch Break |
April 23 | 14:00-15:30 | Mapping |
April 23 | 15:45-17:00 | Raster Data |
April 24 | 09:00-10:30 | Advanced Data Import & Processing |
April 24 | 10:45-12:00 | Applied Data Wrangling & Linking |
April 24 | 12:00-13:00 | Lunch Break |
April 24 | 13:00-14:30 | Investigating Spatial Autocorrelation |
April 24 | 14:45-16:00 | Spatial Econometrics & Outlook |
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
o | Tile View: Overview of Slides |
Esc | Back to slideshow |
GESIS Workshop
Day | Time | Title |
---|---|---|
April 23 | 10:00-11:30 | Introduction to GIS |
April 23 | 11:45-13:00 | Vector Data |
April 23 | 13:00-14:00 | Lunch Break |
April 23 | 14:00-15:30 | Mapping |
April 23 | 15:45-17:00 | Raster Data |
April 24 | 09:00-10:30 | Advanced Data Import & Processing |
April 24 | 10:45-12:00 | Applied Data Wrangling & Linking |
April 24 | 12:00-13:00 | Lunch Break |
April 24 | 13:00-14:30 | Investigating Spatial Autocorrelation |
April 24 | 14:45-16:00 | Spatial Econometrics & Outlook |
plot()
does not allow us to manipulate the maps in an easy. But we already have the two most essential ingredients to create a nice map:
./data
folderattributed_cologne <- sf::read_sf("./data/attributed_cologne.shp") charger_cologne <- sf::read_sf("./data/charger_cologne.shp")streets_cologne <- sf::read_sf("./data/streets_cologne.shp")
Good Mapping
Good Mapping
Bad Mapping
... but there is one other type:
The fast but nice map.
R
Packages for Mapping
As always, R
offers several ways to map spatial data, and the provided packages are various.
What is out there? Just a few:
mapdata
leaflet
tmap
mapview
library(tmap)tm_shape(attributed_cologne) + tm_fill("ecar")
library(tmap)tm_shape(attributed_cologne) + tm_fill("ecar")
tmap
In a NutshellThere is not much to consider when using tmap
but two essential requirements:
tmap
In a NutshellThere is not much to consider when using tmap
but two essential requirements:
# define and introduce every (new) # geospatial data objecttm_shape() + # choose at least one building block as # 'aesthetic layer' # for polygon layer choose from: tm_fill() + # polygons without borders tm_polygons() + # polygons with borders tm_borders() + # only borders of polygons # for line layer choose: tm_lines() + # for point layer choose: tm_dots() + tm_bubbles() + # for raster layer choose tm_raster() + tm_rgb() + ...# for all of them:?'tmap-element'
tmap
In a Nutshell: Polygon Layertm_shape(attributed_cologne) + tm_fill()tm_shape(attributed_cologne) + tm_polygons()tm_shape(attributed_cologne) + tm_borders()
tmap
In a Nutshell: Polygon Layertm_shape(attributed_cologne) + tm_fill()tm_shape(attributed_cologne) + tm_polygons()tm_shape(attributed_cologne) + tm_borders()
tmap
In a Nutshell: Line and Point Layertm_shape(streets_cologne) + tm_lines()tm_shape(charger_cologne) + tm_dots()
tmap
In a Nutshell: Line and Point Layertm_shape(streets_cologne) + tm_lines()tm_shape(charger_cologne) + tm_dots()
tmap
In a Nutshell: Put It All TogetherWe can map the geometric attributes as single layers, but we can also layer our map and stack the layers on each other.
tmap
In a Nutshell: Put It All TogetherWe can map the geometric attributes as single layers, but we can also layer our map and stack the layers on each other.
tm_shape(attributed_cologne) + tm_polygons() + tm_shape(streets_cologne) + tm_lines() + tm_shape(charger_cologne) + tm_dots(col = "red")
tmap
In a Nutshell: Put It All TogetherWe can map the geometric attributes as single layers, but we can also layer our map and stack the layers on each other.
tm_shape(attributed_cologne) + tm_polygons() + tm_shape(streets_cologne) + tm_lines() + tm_shape(charger_cologne) + tm_dots(col = "red")
After we took care of our geometric types, we want to add some information to our data.
The inner construction of each building block of tm_elements
is the same.
tm_shape(attributed_cologne) + tm_polygons("ecar")
tm_shape(attributed_cologne) + tm_polygons("ecar")
tm_shape(attributed_cologne) + tm_polygons( "ecar", palette = "RdPu", title = "Electric Cars", style = "kmeans" )
tm_shape(attributed_cologne) + tm_polygons( "ecar", palette = "RdPu", title = "Electric Cars", style = "kmeans" )
tm_shape(attributed_cologne) + tm_polygons( "ecar", palette = "RdPu", title = "Electric Car", style = "kmeans" ) + tm_layout( legend.outside = TRUE )
tm_shape(attributed_cologne) + tm_polygons("ecar") + tm_scale_bar() + tm_compass()
tm_shape(attributed_cologne) + tm_polygons("ecar") + tm_scale_bar() + tm_compass()
tm_shape(attributed_cologne) + tm_polygons("ecar") + tm_scale_bar(position = "left") + tm_compass(type = "4star")
tm_shape(attributed_cologne) + tm_polygons(c("cdu", "spd", "greens", "afd", "left", "fdp")) + tm_facets( ncol = 3)
attributed_cologne %>% dplyr::mutate(city_area = as.integer(substr(id, 1, 1))) %>% tm_shape(.) + tm_polygons(c("ecar")) + tm_facets(by = "city_area", nrow = 2) + tm_layout(panel.labels = c("1 Innenstadt","2 Rodenkirchen","3 Lindenthal", "4 Ehrenfeld", "5 Nippes","6 Chorweiler", "7 Porz", "8 Kalk", "9 Mülheim"))
tm_shape(attributed_cologne) + tm_polygons("ecar") + tm_style("classic")
# other available styles are: "beaver", "bw", "watercolor" ,# "white", "gray", "natural", "cobalt", "col_blind", "albatross",
tm_animate
allows you to create animated maps and visualize changes in spatial data, e.g. over time or attributes.
You can customize the animation's duration, frame rate, timeline sliders, and transition effects.
vote_gif <- attributed_cologne %>% tidyr::pivot_longer(., cols = c("cdu", "spd", "greens", "afd", "left", "fdp"), # Select all columns to pivot names_to = "party_id", # New column name for party identifier values_to = "voteshare") # New column name for vote shares %>% tm_shape(.) + tm_polygons(c("voteshare")) + tm_facets(along = "party_id") tmap_animation(vote_gif, filename = "./content/img/vote_gif.gif", delay=150)
tmap
offers support for various output formats, including:
You can also control width and height, dpi, etc.
# save regular maptmap_save(ecar_map, filename = "ecar_map.png")# save as interactive maptmap_save(ecar_map, filename = "ecar_map.html" )
In the best cases, maps are easy to understand and an excellent way to transport (scientific) messages.
In the worst cases, they simplify (spurious) correlations and draw a dramatic picture of the world.
Maps can shape narratives
true size
projector?), Example: Kenneth Field's blog post
If you want to dive deeper into mapping with tmap
check out:
And if you want to get some inspiration, keep an eye out for the #30DayMapChallenge
on Twitter.
Repository of Last Year's Challenge here.
Instead of placing maps next to each other, we can also explore spatial correlations by adding layers. Another benefit of layering: We can make our map more realistic and aesthetic.
For example, we can add a background layer of neighboring countries, a layer of German cities, or the German states' borders for orientation. Each layer can visualize another attribute of our map.
For today, we want to add a layer of charging stations to the electric car map.
# map e-car shareecar_map <- tm_shape(german_districts_enhanced) + tm_polygons(col = "ecar_share", title = "Electric Car Share", palette = "viridis", n=10, style = "jenks" ) + tm_layout(main.title = "Electric Cars in Germany", main.title.color = "black" ) + tm_legend(legend.outside = TRUE, legend.outside.position = "left")ecar_map
# map the charging stations on the e-car mapecar_chargers_map <- tm_shape(german_districts_enhanced) + tm_polygons(col = "ecar_share", title = "Electric Car Share", palette = "viridis", n = 10, style = "jenks" ) + tm_layout(main.title = "Electric Cars in Germany", main.title.color = "black" ) + tm_legend(legend.outside = TRUE, legend.outside.position = "left") + # Add charging point data tm_shape(chargers_sf) + tm_dots("power_kw", col = "lightgrey", alpha = 0.1, title.size = "Power of Charging Station (kW)") ecar_chargers_map
Stroppe, A.-K., & Jungmann, N. (2022). Stadt, Land, Wahl: Welchen Einfluss hat der Wohnort auf die Wahlentscheidung bei der Bundestagswahl 2021? easy_social_sciences, 67, 49-60. https://doi.org/10.15464/easy.2022.07
# With Credits to Nils Jungmann## District Shapefilegerman_districts <- # load data sf::read_sf("./data/VG250_KRS.shp") %>% # transform to correct crs sf::st_transform(crs = 3035) %>% # subsetting land area of Germany dplyr::filter(GF == 4) %>% # only keep necessary cols dplyr::select(AGS,geometry) ## BL Shapefilegerman_states <- sf::read_sf("./data/VG250_LAN.shp") %>% # transform to correct crs sf::st_transform(crs = 3035) %>% # subsetting land area of Germany dplyr::filter(GF == 4) %>% # only keep necessary cols dplyr::select(AGS,geometry) ## German Federal Election Results 21 ### Abfrage bundeswahlleiter, 28.02.22### Wahlergebnisse nach kreisfreien Städten und Landkeisen### https://www.bundeswahlleiter.de/bundestagswahlen/2021/ergebnisse/weitere-ergebnisse.htmlbtw21_krs <- # load data read.csv2("./data/btw2021kreis_zweitstimme.csv", header= T, fill = T, sep= ";", dec = ",", colClasses=c("character","character",rep("numeric",44)), encoding = "UTF-8", strip.white = TRUE) %>% # correct name first col dplyr::rename(., AGS = 1) %>% # compute vote shares dplyr::mutate( AGS = stringr::str_pad(.$AGS, 5, pad = "0"), turnout = ((Ungültige + Gültige)/Wahlberechtigte) *100, union_shr = ((CDU + CSU) / Gültige) * 100, afd_shr = (AfD / Gültige) * 100, fdp_shr = (FDP / Gültige) * 100, spd_shr = (SPD / Gültige) * 100, linke_shr = (DIE.LINKE / Gültige) * 100, green_shr = (GRÜNE / Gültige) * 100, sonstige_shr = (rowSums(.[14:46])/Gültige) * 100) %>% # select necessary vars dplyr::select(AGS,turnout, ends_with(c("_shr"))) %>% # remove mean over all districts dplyr::filter(. , AGS != "00000") %>% # aggregate east and west berlin dplyr::mutate(. , AGS = ifelse(AGS == "11100" | AGS == "11200", "11000", AGS)) %>% dplyr::group_by(AGS) %>% dplyr::summarise(across(everything(), list(mean))) %>% dplyr::rename_with(~stringr::str_remove(., '_1'))## correct for district that was reformed in 2022btw21_krs <- btw21_krs %>% dplyr::filter(., AGS == "16063") %>% dplyr::mutate( AGS = "16056") %>% dplyr::bind_rows(btw21_krs,.)## join election results to shapefilegerman_districts_btw <- german_districts %>% dplyr::left_join(. , btw21_krs, by = "AGS") # Prepare for mapping: Dataset for each party plus colorunion <- german_districts_btw %>% dplyr::select(union_shr, geometry) %>% dplyr::mutate(party = "Union", color = "#030303") %>% dplyr::rename(party_shr = union_shr)spd <- german_districts_btw %>% dplyr::select(spd_shr, geometry) %>% dplyr::mutate(party = "SPD", color = "#FF0000") %>% dplyr::rename(party_shr = spd_shr)fdp <- german_districts_btw %>% dplyr::select(fdp_shr, geometry) %>% dplyr::mutate(party = "FDP", color = "#FFFF00") %>% dplyr::rename(party_shr = fdp_shr)gruene <- german_districts_btw %>% dplyr::select(green_shr, geometry) %>% dplyr::mutate(party = "Gruene", color = "#66CD00") %>% dplyr::rename(party_shr = green_shr)linke <- german_districts_btw %>% dplyr::select(linke_shr, geometry) %>% dplyr::mutate(party = "Linke", color = "#8A2BE2") %>% dplyr::rename(party_shr =linke_shr)afd <- german_districts_btw %>% dplyr::select(afd_shr, geometry) %>% dplyr::mutate(party = "AfD", color = "#1E90FF") %>% dplyr::rename(party_shr = afd_shr)# bind the datasetsparty_shares <- rbind(union, spd, fdp, gruene, linke, afd)# plot## nested datasetby_party <- party_shares %>% dplyr::group_by(party, color) %>% tidyr::nest()## add list of party colors for figuresparty_colors <- c("#030303", "#FF0000", "#FFFF00", "#66CD00", "#8A2BE2", "#1E90FF")# custom party color palettesparties <- c("Union", "SPD", "FDP", "GRÜNE", "LINKE", "AfD")party_palette_fcts <- purrr::map(party_colors, ~ colorRampPalette(c("#FFFFFF",.x)))names(party_palette_fcts) <- paste0(parties,"_palette")union_palette <- party_palette_fcts[[1]](10)spd_palette <- party_palette_fcts[[2]](10)fdp_palette <- party_palette_fcts[[3]](10)gruene_palette <- party_palette_fcts[[4]](10)linke_palette <- party_palette_fcts[[5]](10)afd_palette <- party_palette_fcts[[6]](10)# labels for vote sharesvs_labels <- c("0 bis 5", "5 bis 10", "10 bis 15", "15 bis 20", "20 bis 25", "25 bis 30", "30 bis 35", "35 bis 40", "40 bis 45", "45 bis 50")# maps# mapsuni_btwshare_map <- tm_shape(subset(party_shares, party == "Union")) + tm_polygons("party_shr", title = "CDU/CSU", palette = union_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)spd_btwshare_map <- tm_shape(subset(party_shares, party == "SPD")) + tm_polygons("party_shr", title = "SPD", palette = spd_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)fdp_btwshare_map <- tm_shape(subset(party_shares, party == "FDP")) + tm_polygons("party_shr", title = "FDP", palette = fdp_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)gru_btwshare_map <- tm_shape(subset(party_shares, party == "Gruene")) + tm_polygons("party_shr", title = "Grüne", palette = gruene_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)lin_btwshare_map <- tm_shape(subset(party_shares, party == "Linke")) + tm_polygons("party_shr", title = "DIE LINKE", palette = linke_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)afd_btwshare_map <- tm_shape(subset(party_shares, party == "AfD")) + tm_polygons("party_shr", title = "AfD", palette = afd_palette, labels = vs_labels, style = "fixed", n = 10, breaks = c(0,5,10,15,20,25,30,35,40,45,50), border.alpha = 0) + tm_shape(german_states) + tm_polygons("AGS", alpha = 0, border.col = "lightgrey", legend.show = F) + tm_layout(legend.title.size = .8, legend.outside = T, frame = F)# combine mapsall_btwshare_map <- tmap_arrange(uni_btwshare_map, spd_btwshare_map, fdp_btwshare_map, gru_btwshare_map, lin_btwshare_map, afd_btwshare_map, ncol = 3) all_btwshare_map# tmap_save(all_btwshare_map, filename = "party_vote_shares_district_map.eps", dpi = 600)