+ - 0:00:00
Notes for current slide
Notes for next slide

Introduction to Geospatial Techniques for Social Scientists in R

Mapping

Stefan Jünger & Anne-Kathrin Stroppe

GESIS Workshop

June 06, 2022

1 / 49

Now

Day Time Title
April 23 10:00-11:30 Introduction to GIS
April 23 11:45-13:00 Vector Data
April 23 13:00-14:00 Lunch Break
April 23 14:00-15:30 Mapping
April 23 15:45-17:00 Raster Data
April 24 09:00-10:30 Advanced Data Import & Processing
April 24 10:45-12:00 Applied Data Wrangling & Linking
April 24 12:00-13:00 Lunch Break
April 24 13:00-14:30 Investigating Spatial Autocorrelation
April 24 14:45-16:00 Spatial Econometrics & Outlook
2 / 49

Fun With Flags... MAPS!


Fun with Flags by Dr. Sheldon Cooper. Big Bang Theory

3 / 49

Fun with maps

plot() does not allow us to manipulate the maps in an easy. But we already have the two most essential ingredients to create a nice map:

  1. Vector data stored in the ./data folder
  2. Some (hopefully) interesting attributes linked with the geometries.

4 / 49

Cologne data

attributed_cologne <-
sf::read_sf("./data/attributed_cologne.shp")
charger_cologne <- sf::read_sf("./data/charger_cologne.shp")
streets_cologne <- sf::read_sf("./data/streets_cologne.shp")
5 / 49

What makes a good map?


Good Mapping

  • reduction to most important information
  • legends, scales, descriptions
  • audience oriented
  • adjusted for color vision deficiencies
6 / 49

What makes a good map?


Good Mapping

  • reduction to most important information
  • legends, scales, descriptions
  • audience oriented
  • adjusted for color vision deficiencies

Bad Mapping

  • overcrowding and overlapping
  • unreadable information
  • missing information like the legend or source
  • poor choice of color palettes
7 / 49

What makes a good map?

... but there is one other type:

The fast but nice map.

  • fast exploration of spatial data by visualizing the geometries and attributes
  • might not be publication-ready yet, but they are more rewarding than just plotting information.
8 / 49

The choice is Yours: R Packages for Mapping



As always, R offers several ways to map spatial data, and the provided packages are various. What is out there? Just a few:

  • base R graphics package: mapdata
  • mobile-friendly interactive maps: leaflet
  • interactive and static thematic maps based on shapefiles:
  • tmap
  • mapview
9 / 49

Our Choice Today

Today, we'll concentrate on the package tmap

  • very intuitive and makes "good" decisions for us
  • the syntax is very similar to ggplot2*

Source

*A wide-known 'secret' is that tmap creates a map based on ggplot2, so ggplot2-specific graphics manipulations will work as well.

10 / 49

First Map: Cologne Electric Car Data

library(tmap)
tm_shape(attributed_cologne) +
tm_fill("ecar")
11 / 49

First Map: Cologne Electric Car Data

library(tmap)
tm_shape(attributed_cologne) +
tm_fill("ecar")

12 / 49

tmap In a Nutshell

There is not much to consider when using tmap but two essential requirements:

  1. Define your spatial object.
  2. Choose a building block to determine how to display information.
13 / 49

tmap In a Nutshell

There is not much to consider when using tmap but two essential requirements:

  1. Define your spatial object.
  2. Choose a building block to determine how to display information.
# define and introduce every (new)
# geospatial data object
tm_shape() +
# choose at least one building block as
# 'aesthetic layer'
# for polygon layer choose from:
tm_fill() + # polygons without borders
tm_polygons() + # polygons with borders
tm_borders() + # only borders of polygons
# for line layer choose:
tm_lines() +
# for point layer choose:
tm_dots() +
tm_bubbles() +
# for raster layer choose
tm_raster() +
tm_rgb() +
...
# for all of them:
?'tmap-element'
14 / 49

tmap In a Nutshell: Polygon Layer

tm_shape(attributed_cologne) +
tm_fill()
tm_shape(attributed_cologne) +
tm_polygons()
tm_shape(attributed_cologne) +
tm_borders()
15 / 49

tmap In a Nutshell: Polygon Layer

tm_shape(attributed_cologne) +
tm_fill()
tm_shape(attributed_cologne) +
tm_polygons()
tm_shape(attributed_cologne) +
tm_borders()

16 / 49

tmap In a Nutshell: Line and Point Layer

tm_shape(streets_cologne) +
tm_lines()
tm_shape(charger_cologne) +
tm_dots()
17 / 49

tmap In a Nutshell: Line and Point Layer

tm_shape(streets_cologne) +
tm_lines()
tm_shape(charger_cologne) +
tm_dots()

18 / 49

tmap In a Nutshell: Put It All Together

We can map the geometric attributes as single layers, but we can also layer our map and stack the layers on each other.

19 / 49

tmap In a Nutshell: Put It All Together

We can map the geometric attributes as single layers, but we can also layer our map and stack the layers on each other.

tm_shape(attributed_cologne) +
tm_polygons() +
tm_shape(streets_cologne) +
tm_lines() +
tm_shape(charger_cologne) +
tm_dots(col = "red")
20 / 49

tmap In a Nutshell: Put It All Together

We can map the geometric attributes as single layers, but we can also layer our map and stack the layers on each other.

tm_shape(attributed_cologne) +
tm_polygons() +
tm_shape(streets_cologne) +
tm_lines() +
tm_shape(charger_cologne) +
tm_dots(col = "red")

21 / 49

Add Some Information



After we took care of our geometric types, we want to add some information to our data. The inner construction of each building block of tm_elements is the same.

  1. Define the variable of interest first by stating the column name.
  2. Add a name for the legend title and color palette, adjust the legend and scales ...
22 / 49

Choosing an Attribute

tm_shape(attributed_cologne) +
tm_polygons("ecar")
23 / 49

Choosing an Attribute

tm_shape(attributed_cologne) +
tm_polygons("ecar")

24 / 49

Choosing a Color Palette

tm_shape(attributed_cologne) +
tm_polygons(
"ecar",
palette = "RdPu",
title = "Electric Cars",
style = "kmeans"
)
25 / 49

Choosing a Color Palette

tm_shape(attributed_cologne) +
tm_polygons(
"ecar",
palette = "RdPu",
title = "Electric Cars",
style = "kmeans"
)

26 / 49

Re-Placing the Legend

tm_shape(attributed_cologne) +
tm_polygons(
"ecar",
palette = "RdPu",
title = "Electric Car",
style = "kmeans"
) +
tm_layout(
legend.outside = TRUE
)

27 / 49

Compasses & Scale Bars

tm_shape(attributed_cologne) +
tm_polygons("ecar") +
tm_scale_bar() +
tm_compass()

28 / 49

Compasses & Scale Bars

tm_shape(attributed_cologne) +
tm_polygons("ecar") +
tm_scale_bar() +
tm_compass()

tm_shape(attributed_cologne) +
tm_polygons("ecar") +
tm_scale_bar(position = "left") +
tm_compass(type = "4star")

29 / 49

Exercise 1_3_1: Basic Maps

Exercise

Solution

30 / 49

What's Left?


31 / 49

Getting Interactive (as an Alternative To mapview::mapview())!

ecar_map <-
tm_shape(attributed_cologne) +
tm_borders(col = "black") +
tm_polygons("ecar")
tmap_mode("view")
ecar_map
32 / 49

Facets I

tm_shape(attributed_cologne) +
tm_polygons(c("cdu", "spd", "greens", "afd", "left", "fdp")) +
tm_facets( ncol = 3)

33 / 49

Facets II

attributed_cologne %>%
dplyr::mutate(city_area = as.integer(substr(id, 1, 1))) %>%
tm_shape(.) +
tm_polygons(c("ecar")) +
tm_facets(by = "city_area", nrow = 2) +
tm_layout(panel.labels = c("1 Innenstadt","2 Rodenkirchen","3 Lindenthal",
"4 Ehrenfeld", "5 Nippes","6 Chorweiler",
"7 Porz", "8 Kalk", "9 Mülheim"))

34 / 49

Change Style

tm_shape(attributed_cologne) +
tm_polygons("ecar") +
tm_style("classic")

# other available styles are: "beaver", "bw", "watercolor" ,
# "white", "gray", "natural", "cobalt", "col_blind", "albatross",
35 / 49

Color Vision Deficiencies: Standard Palette

Created with the package colorBlindness

36 / 49

Color Vision Deficiencies: Viridis Palette

Created with the package colorBlindness

37 / 49

Animation

tm_animate allows you to create animated maps and visualize changes in spatial data, e.g. over time or attributes. You can customize the animation's duration, frame rate, timeline sliders, and transition effects.

vote_gif <-
attributed_cologne %>%
tidyr::pivot_longer(.,
cols = c("cdu", "spd", "greens", "afd",
"left", "fdp"), # Select all columns to pivot
names_to = "party_id", # New column name for party identifier
values_to = "voteshare") # New column name for vote shares %>%
tm_shape(.) +
tm_polygons(c("voteshare")) +
tm_facets(along = "party_id")
tmap_animation(vote_gif,
filename = "./content/img/vote_gif.gif",
delay=150)

38 / 49

Save Maps

tmap offers support for various output formats, including:

  • Static Images: PNG, JPEG, TIFF, etc.
  • Interactive Web Maps: HTML, JavaScript (using packages like leaflet).
  • Animated Maps: GIF, MP4, etc.

You can also control width and height, dpi, etc.

# save regular map
tmap_save(ecar_map, filename = "ecar_map.png")
# save as interactive map
tmap_save(ecar_map, filename = "ecar_map.html" )
39 / 49

Note On Mapping Responsible

In the best cases, maps are easy to understand and an excellent way to transport (scientific) messages.

In the worst cases, they simplify (spurious) correlations and draw a dramatic picture of the world.

Maps can shape narratives

  • Decisions on which projection you use (remember the true size projector?),
  • the segment of the world you choose,
  • and the colors and styles you add have a strong influence.

Example: Kenneth Field's blog post

40 / 49

More Resources


If you want to dive deeper into mapping with tmap check out:

And if you want to get some inspiration, keep an eye out for the #30DayMapChallenge on Twitter. Repository of Last Year's Challenge here.

41 / 49

Exercise 1_3_2: Fun with Maps

Exercise

Solution

42 / 49

Add-on Slides: TMap Examples

43 / 49

Map Examples: E-Mobility

Instead of placing maps next to each other, we can also explore spatial correlations by adding layers. Another benefit of layering: We can make our map more realistic and aesthetic.

For example, we can add a background layer of neighboring countries, a layer of German cities, or the German states' borders for orientation. Each layer can visualize another attribute of our map.

For today, we want to add a layer of charging stations to the electric car map.

44 / 49

E-Mobility and Charging Stations

# map e-car share
ecar_map <-
tm_shape(german_districts_enhanced) +
tm_polygons(col =
"ecar_share",
title =
"Electric Car Share",
palette = "viridis",
n=10,
style = "jenks"
) +
tm_layout(main.title =
"Electric Cars in Germany",
main.title.color =
"black" ) +
tm_legend(legend.outside =
TRUE,
legend.outside.position =
"left")
ecar_map

45 / 49

E-Mobility and Charging Stations

# map the charging stations on the e-car map
ecar_chargers_map <-
tm_shape(german_districts_enhanced) +
tm_polygons(col =
"ecar_share",
title =
"Electric Car Share",
palette = "viridis",
n = 10,
style = "jenks"
) +
tm_layout(main.title =
"Electric Cars in Germany",
main.title.color =
"black" ) +
tm_legend(legend.outside =
TRUE,
legend.outside.position =
"left") +
# Add charging point data
tm_shape(chargers_sf) +
tm_dots("power_kw",
col =
"lightgrey",
alpha = 0.1,
title.size =
"Power of Charging Station (kW)")
ecar_chargers_map

46 / 49

German Federal Election 2021

47 / 49

The Corresponding Code

Stroppe, A.-K., & Jungmann, N. (2022). Stadt, Land, Wahl: Welchen Einfluss hat der Wohnort auf die Wahlentscheidung bei der Bundestagswahl 2021? easy_social_sciences, 67, 49-60. https://doi.org/10.15464/easy.2022.07

# With Credits to Nils Jungmann
## District Shapefile
german_districts <-
# load data
sf::read_sf("./data/VG250_KRS.shp") %>%
# transform to correct crs
sf::st_transform(crs = 3035) %>%
# subsetting land area of Germany
dplyr::filter(GF == 4) %>%
# only keep necessary cols
dplyr::select(AGS,geometry)
## BL Shapefile
german_states <-
sf::read_sf("./data/VG250_LAN.shp") %>%
# transform to correct crs
sf::st_transform(crs = 3035) %>%
# subsetting land area of Germany
dplyr::filter(GF == 4) %>%
# only keep necessary cols
dplyr::select(AGS,geometry)
## German Federal Election Results 21
### Abfrage bundeswahlleiter, 28.02.22
### Wahlergebnisse nach kreisfreien Städten und Landkeisen
### https://www.bundeswahlleiter.de/bundestagswahlen/2021/ergebnisse/weitere-ergebnisse.html
btw21_krs <-
# load data
read.csv2("./data/btw2021kreis_zweitstimme.csv",
header= T,
fill = T,
sep= ";",
dec = ",",
colClasses=c("character","character",rep("numeric",44)),
encoding = "UTF-8",
strip.white = TRUE) %>%
# correct name first col
dplyr::rename(., AGS = 1) %>%
# compute vote shares
dplyr::mutate(
AGS = stringr::str_pad(.$AGS, 5, pad = "0"),
turnout = ((Ungültige + Gültige)/Wahlberechtigte) *100,
union_shr = ((CDU + CSU) / Gültige) * 100,
afd_shr = (AfD / Gültige) * 100,
fdp_shr = (FDP / Gültige) * 100,
spd_shr = (SPD / Gültige) * 100,
linke_shr = (DIE.LINKE / Gültige) * 100,
green_shr = (GRÜNE / Gültige) * 100,
sonstige_shr = (rowSums(.[14:46])/Gültige) * 100) %>%
# select necessary vars
dplyr::select(AGS,turnout, ends_with(c("_shr"))) %>%
# remove mean over all districts
dplyr::filter(. , AGS != "00000") %>%
# aggregate east and west berlin
dplyr::mutate(. , AGS = ifelse(AGS == "11100" | AGS == "11200",
"11000", AGS)) %>%
dplyr::group_by(AGS) %>%
dplyr::summarise(across(everything(), list(mean))) %>%
dplyr::rename_with(~stringr::str_remove(., '_1'))
## correct for district that was reformed in 2022
btw21_krs <-
btw21_krs %>%
dplyr::filter(., AGS == "16063") %>%
dplyr::mutate( AGS = "16056") %>%
dplyr::bind_rows(btw21_krs,.)
## join election results to shapefile
german_districts_btw <-
german_districts %>%
dplyr::left_join(. , btw21_krs, by = "AGS")
# Prepare for mapping: Dataset for each party plus color
union <-
german_districts_btw %>%
dplyr::select(union_shr, geometry) %>%
dplyr::mutate(party = "Union",
color = "#030303") %>%
dplyr::rename(party_shr = union_shr)
spd <-
german_districts_btw %>%
dplyr::select(spd_shr, geometry) %>%
dplyr::mutate(party = "SPD",
color = "#FF0000") %>%
dplyr::rename(party_shr = spd_shr)
fdp <-
german_districts_btw %>%
dplyr::select(fdp_shr, geometry) %>%
dplyr::mutate(party = "FDP",
color = "#FFFF00") %>%
dplyr::rename(party_shr = fdp_shr)
gruene <-
german_districts_btw %>%
dplyr::select(green_shr, geometry) %>%
dplyr::mutate(party = "Gruene",
color = "#66CD00") %>%
dplyr::rename(party_shr = green_shr)
linke <-
german_districts_btw %>%
dplyr::select(linke_shr, geometry) %>%
dplyr::mutate(party = "Linke",
color = "#8A2BE2") %>%
dplyr::rename(party_shr =linke_shr)
afd <-
german_districts_btw %>%
dplyr::select(afd_shr, geometry) %>%
dplyr::mutate(party = "AfD",
color = "#1E90FF") %>%
dplyr::rename(party_shr = afd_shr)
# bind the datasets
party_shares <- rbind(union, spd, fdp, gruene, linke, afd)
# plot
## nested dataset
by_party <- party_shares %>%
dplyr::group_by(party, color) %>%
tidyr::nest()
## add list of party colors for figures
party_colors <- c("#030303", "#FF0000", "#FFFF00", "#66CD00",
"#8A2BE2", "#1E90FF")
# custom party color palettes
parties <- c("Union", "SPD", "FDP", "GRÜNE", "LINKE", "AfD")
party_palette_fcts <- purrr::map(party_colors, ~ colorRampPalette(c("#FFFFFF",.x)))
names(party_palette_fcts) <- paste0(parties,"_palette")
union_palette <- party_palette_fcts[[1]](10)
spd_palette <- party_palette_fcts[[2]](10)
fdp_palette <- party_palette_fcts[[3]](10)
gruene_palette <- party_palette_fcts[[4]](10)
linke_palette <- party_palette_fcts[[5]](10)
afd_palette <- party_palette_fcts[[6]](10)
# labels for vote shares
vs_labels <- c("0 bis 5", "5 bis 10", "10 bis 15", "15 bis 20", "20 bis 25",
"25 bis 30", "30 bis 35", "35 bis 40", "40 bis 45", "45 bis 50")
# maps
# maps
uni_btwshare_map <- tm_shape(subset(party_shares, party == "Union")) +
tm_polygons("party_shr",
title = "CDU/CSU",
palette = union_palette,
labels = vs_labels,
style = "fixed",
n = 10,
breaks = c(0,5,10,15,20,25,30,35,40,45,50),
border.alpha = 0) +
tm_shape(german_states) +
tm_polygons("AGS",
alpha = 0,
border.col = "lightgrey",
legend.show = F) +
tm_layout(legend.title.size = .8,
legend.outside = T,
frame = F)
spd_btwshare_map <- tm_shape(subset(party_shares, party == "SPD")) +
tm_polygons("party_shr",
title = "SPD",
palette = spd_palette,
labels = vs_labels,
style = "fixed",
n = 10,
breaks = c(0,5,10,15,20,25,30,35,40,45,50),
border.alpha = 0) +
tm_shape(german_states) +
tm_polygons("AGS",
alpha = 0,
border.col = "lightgrey",
legend.show = F) +
tm_layout(legend.title.size = .8,
legend.outside = T,
frame = F)
fdp_btwshare_map <- tm_shape(subset(party_shares, party == "FDP")) +
tm_polygons("party_shr",
title = "FDP",
palette = fdp_palette,
labels = vs_labels,
style = "fixed",
n = 10,
breaks = c(0,5,10,15,20,25,30,35,40,45,50),
border.alpha = 0) +
tm_shape(german_states) +
tm_polygons("AGS",
alpha = 0,
border.col = "lightgrey",
legend.show = F) +
tm_layout(legend.title.size = .8,
legend.outside = T,
frame = F)
gru_btwshare_map <- tm_shape(subset(party_shares, party == "Gruene")) +
tm_polygons("party_shr",
title = "Grüne",
palette = gruene_palette,
labels = vs_labels,
style = "fixed",
n = 10,
breaks = c(0,5,10,15,20,25,30,35,40,45,50),
border.alpha = 0) +
tm_shape(german_states) +
tm_polygons("AGS",
alpha = 0,
border.col = "lightgrey",
legend.show = F) +
tm_layout(legend.title.size = .8,
legend.outside = T,
frame = F)
lin_btwshare_map <- tm_shape(subset(party_shares, party == "Linke")) +
tm_polygons("party_shr",
title = "DIE LINKE",
palette = linke_palette,
labels = vs_labels,
style = "fixed",
n = 10,
breaks = c(0,5,10,15,20,25,30,35,40,45,50),
border.alpha = 0) +
tm_shape(german_states) +
tm_polygons("AGS",
alpha = 0,
border.col = "lightgrey",
legend.show = F) +
tm_layout(legend.title.size = .8,
legend.outside = T,
frame = F)
afd_btwshare_map <- tm_shape(subset(party_shares, party == "AfD")) +
tm_polygons("party_shr",
title = "AfD",
palette = afd_palette,
labels = vs_labels,
style = "fixed",
n = 10,
breaks = c(0,5,10,15,20,25,30,35,40,45,50),
border.alpha = 0) +
tm_shape(german_states) +
tm_polygons("AGS",
alpha = 0,
border.col = "lightgrey",
legend.show = F) +
tm_layout(legend.title.size = .8,
legend.outside = T,
frame = F)
# combine maps
all_btwshare_map <- tmap_arrange(uni_btwshare_map, spd_btwshare_map, fdp_btwshare_map,
gru_btwshare_map, lin_btwshare_map, afd_btwshare_map,
ncol = 3)
all_btwshare_map
# tmap_save(all_btwshare_map, filename = "party_vote_shares_district_map.eps", dpi = 600)
48 / 49

Now

Day Time Title
April 23 10:00-11:30 Introduction to GIS
April 23 11:45-13:00 Vector Data
April 23 13:00-14:00 Lunch Break
April 23 14:00-15:30 Mapping
April 23 15:45-17:00 Raster Data
April 24 09:00-10:30 Advanced Data Import & Processing
April 24 10:45-12:00 Applied Data Wrangling & Linking
April 24 12:00-13:00 Lunch Break
April 24 13:00-14:30 Investigating Spatial Autocorrelation
April 24 14:45-16:00 Spatial Econometrics & Outlook
2 / 49
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
oTile View: Overview of Slides
Esc Back to slideshow