You can continue to work with the analyses you did in the previous set of exercises.
easystats
packages we have used in the lecture.
library(dplyr)
library(haven)
library(parameters)
library(performance)
library(see)
allbus_2021_dvII_2 <-
read_spss("./data/allbus_2021/ZA5280_v1-0-0.sav") %>%
mutate(political_orientation = as.numeric(pa01))
## Converting atomic to factors. Please wait...
linear_model_interaction <-
lm(
political_orientation ~ age * eastwest,
data = allbus_2021_dvII_2
)
model_parameters(linear_model_interaction) %>%
plot()
easytats plots are based on
ggplot2. You could choose from one of
ggplot2’s built-in themes from this list: https://ggplot2.tidyverse.org/reference/ggtheme.html. In
another step, you could adjust the color of the scale, e.g., with
scale_colour_grey(). Be creative.
model_parameters(linear_model_interaction) %>%
plot() +
scale_colour_grey(start = 0,
end = .5,
guide = "none") +
theme_minimal()
## Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
plot_model() function from
sjPlot.
library(sjPlot)
plot_model(
linear_model_interaction,
type = "int"
)